

Alden Cheng

NBER Postdoctoral Research Associate Gies Health Initiatives Research Scholar

November 2, 2023

Intro	Theory	Simulations	Empirical Applications	Extensions	Conclusion
Intro					
Theo	ry				
Simul	lations				
Empi	rical Applications				
Exten					
Concl	lusion				

Intro Theory Simulations Empirical Applications Extensions Conclusion

Regression Discontinuity (RD) Designs

- One of the most promising tools that have emerged out of the "credibility revolution" (Angrist and Pischke 2010).
 - Gold standard for studying causal relationships is RCT, but often infeasible.
 - Among other methods to study causal relationships, RD designs are arguably the most transparent, and best mimics an RCT.
- ► Simple example to illustrate: effect of college-going on long-run health outcomes.
 - Can run a regression of health on college-going, controlling for characteristics, but we may be worried about omitted variables bias.
 - Suppose college admission depends on whether students' test scores pass a threshold.
 - Compare outcomes of students who barely passed versus barely missed the threshold.
 - Convincing because we expect the two sets of students to be very similar on both observables and unobservables.

Intro	Theory	Simulations	Empirical Applications	Extensions	Conclusion
Setup					

- Notation:
 - Treatment W_i , outcome Y_i .
 - ▶ Potential outcomes: $Y_i(1)$, $Y_i(0)$. $Y_i = W_i Y_i(1) + (1 W_i) Y_i(0)$.
 - Running variable X_i (assume normalized so that threshold is zero).
- Sharp RD: $W_i = \mathbb{I}[X_i \ge 0].$
 - Estimand:

$$\lim_{x\to 0^+} \mathbb{E}[Y_i|X_i=x] - \lim_{x\to 0^-} \mathbb{E}[Y_i|X_i=x]$$

Fuzzy RD: lim_{x→0+} Pr(W_i = 1|X_i = x) > lim_{x→0-} Pr(W_i = 1|X_i = x).
 Estimand:

$$\frac{\lim_{x\to 0^+} \mathbb{E}[Y_i|X_i=x] - \lim_{x\to 0^-} \mathbb{E}[Y_i|X=x]}{\lim_{x\to 0^+} \Pr(W_i=1|X_i=x) - \lim_{x\to 0^-} \Pr(W_i=1|X_i=x)}.$$

Intro Visual Illustration (Sharp RD) Outcome **Running Variable** Intro Theory Simulations Empirical Applications Extensions Conclusion

Testing the Identification Assumptions

>

• The most primitive assumption is that the conditional expectation functions of potential outcomes are continuous at the threshold: for w = 0, 1,

$$\lim_{\kappa\to 0^+} \mathbb{E}[Y_i(w)|X_i=x] = \lim_{x\to 0^-} \mathbb{E}[Y_i(w)|X_i=x].$$

- However, this is fundamentally untestable, so Lee (2008) provide a more easily interpretable set of conditions:
 - Specifically, individuals should not be able to precisely manipulate their running variable.
- Two intuitive tests:
 - 1. "McCrary test": Density of the running variable $f_X(x)$ should be continuous at the threshold (McCrary 2008).
 - 2. "Placebo" RDs: if we estimate RDs with baseline characteristics of individuals as the "outcome", the effect should be zero.

Intro	Theory	Simulations	Empirical Applications	Extensions	Conclusion

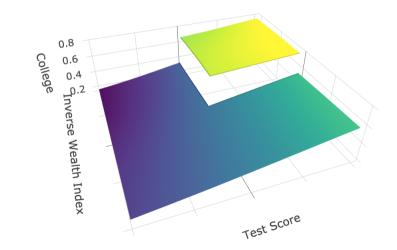
Many Application in Healthcare

- ► Card, Dobkin, Maestas (2009): does Medicare save lives?
 - Medicare eligibility depends primarily on whether age exceeds 65.
 - Running variable = Age; Threshold = 65.
- ► Almond et al. (2010): effect of medical expenditure on at-risk newborns' health.
 - Newborns classified as "very low birth weight" (<1500g) receive more medical treatment.</p>
 - Running variable = Birthweight; Threshold = 1500g.
- > Almond et al. (2011): effect of longer hospital stay for mother and newborns.
 - ► Hospitals are reimbursed based on how many "midnights" newborns stay.
 - Running variable = Clock time of birth; Threshold = 12:00am (those born just after midnight stay for longer on average).

- While RD provides clean identification, its biggest limitation is that it only estimates the effect for individuals with running variable values local to the threshold.
 - Let $\tau(x) \equiv \mathbb{E}[Y_i(1) Y_i(0)|X_i = x]$. RD only identifies $\tau(0)$.
 - ▶ In reality, we may be interested in other quantities, e.g.,
 - Average Treatment Effect: $\mathbb{E}[\tau(X_i)] = \int_x \tau(x) dF_X(x)$.
 - Treatment effect heterogeneity: $\tau'(x)$.

Intro Theory Simulations Empirical Applications Extensions Conclusion Multidimensional RD (MRD) Designs Presents an Opportunity \blacktriangleright Suppose that treatment W is determined by more than one running variable. • Suppose two for simplicity: X_1, X_2 . \triangleright Example: financial aid eligibility may depend on academic performance (X₁) and family income (X_2) . \blacktriangleright Key insight: the threshold is no longer a point, but a "frontier". \mathbb{F} . \rightarrow Can estimate heterogeneous treatment effects $\tau(x)$ for $x \in \mathbb{F}$.

Visual Illustration (MRD)



IIItro	Theory	Simulations	Empirical Applications	Extensions	Conclusion			
Most Applied Work Do Not Take Advantage of This								
► Most a	Most applied work do not take advantage of this feature of MRD.							
		e sample to indivi RD on the other	duals eligible on one din dimension.	nension, and estimat	e			

Disadvantages of applied approach:

Inches

- Does not make full use of heterogeneity: cannot answer questions such as "is the treatment effect increasing/decreasing in income"?
- Inefficient: throws away (often a large) part of the sample.
- In today's talk, I will describe a simple and more efficient way to estimate MRD designs, which also allows us to estimate heterogeneous treatment effects.

Examples of MRD

- With the growing availability of richer datasets, MRD designs can be used in an increasing number of settings.
 - ► Financial aid eligibility may depend on academic performance (X₁) and family income (X₂).
 - Medicaid eligibility may depend on age and wealth.
 - Extra attention is paid to VLBW (<1500g) and premature (gestation age < 37 weeks) newborns.</p>

Theory	Empirical Applications	Conclusion
Intro		
Theory		
Simulations		
Empirical Applications		
Extensions		
Conclusion		

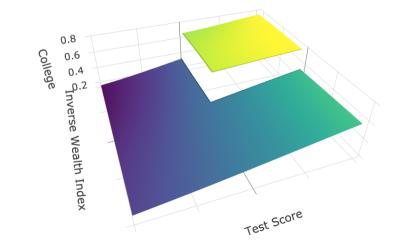
MRD Identification

For MRD, the conditional average treatment effect (CATE) at any point along the frontier \mathbb{F} is identified:

$$\begin{aligned} \tau_{MRD}(x) &\equiv \mathbb{E}\left[Y_i(1) - Y_i(0) | X_i = x\right] \\ &= \lim_{\epsilon \to 0} \mathbb{E}\left[Y_i | X_i \in B^1_{\epsilon}(x)\right] - \lim_{\epsilon' \to 0} \mathbb{E}\left[Y_i | X_i \in B^0_{\epsilon'}(x)\right], \end{aligned}$$

for any $x \in \mathbb{F}$, where $B_{\epsilon}^{w}(x) \equiv B_{\epsilon}(x) \cap \Omega_{w}$, $B_{\epsilon}(x)$ is the ϵ -ball around x, and Ω_{w} is the region in running variable space where units are eligible for treatment $w \in \{0, 1\}$.

Essentially, We Just Need to Estimate Two CEFs. But How?

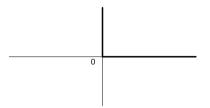


Single-Dimensional RD Estimation

- Before discussing MRD estimation, let's first review how it's done for single-dimensional RDs.
- A common approach in applied work for single-dimensional RDs is to fit global polynomials on both sides of the threshold.
- ▶ RD estimation using local linear regressions has theoretically optimal properties:
 - ▶ RD estimate is only determined based on observations "close" to the threshold.
 - How close? Need to estimate the optimal bandwidth h^{opt}, which depends on parameters like the second derivative of the conditional expectation function (CEF) that need to be estimated nonparametrically.

Challenge for MRD Estimation

- Can we extend the local linear regression estimation method to MRD?
 - ► In principle yes, but in practice data requirements will be very high. Why?
 - ► Need to estimate a *continuum* of optimal bandwidth h^{opt}(x) for each point x along the treatment frontier F.
 - Optimal bandwidth formula at each point also more complicated: "second derivative" is now the Hessian matrix for the two-dimensional case.



What Do We Want in a Good Estimator?

- 1. Flexible: estimates close to \mathbb{F} should only be affected by nearby points (nonparametric estimation).
- 2. Not *too* flexible: don't want to overfit, so need to control the smoothness (regularization, e.g., bandwidth in local linear regressions).
- 3. Feasible/easy to compute: while estimating MRD designs via local linear regressions has optimality properties, estimating second derivative of a multivariate function nonparametrically requires a lot of data.

Thin Plate Splines

- The solution I propose is to use a method called thin plate splines.
- Specifically, for z = 0, 1, we estimate:

$$\hat{g}_z = argmin_{u \in \Omega_z} \sum_{i=1}^{n_z} \left(y_i^z - u(x_i^z)
ight)^2 + \lambda_z J_{md}^z(u),$$

where the penalty $J_{md}^{z}(u)$ is given by:

$$J_{md}^{z}(u) \equiv \int_{\Omega_{z}} \sum_{|\alpha| \leq m} |D^{\alpha}u|^{2} dx.$$

• For our purposes, main difference from local linear regressions is that the penalty parameter is a scalar λ_z , instead of a continuum of optimal bandwidths $h^{opt}(x)$.

Inference

- - > Alternatively, we can use nonparametric bootstrap to obtain standard errors.
- A potential issue is that MSE-optimal estimates generally have non-negligible bias in the asymptotic distribution.
 - Common issue for nonparametric estimation.
- Solution here: undersmoothing.
 - Either ad hoc: divide MSE-optimal $\hat{\lambda}_z$ by two, or;
 - Use MSE-optimal $\hat{\lambda}_z$ from a higher-order thin plate spline.

	Theory	Simulations	Empirical Applications	Conclusion
	Intro			
	Theory			
	Charlettene			
	Simulations			
l l	Empirical Applications			
	Extensions			

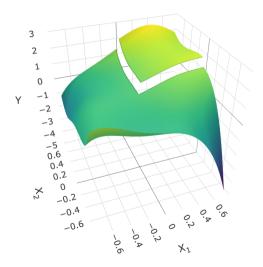
Conclusion

So, Does It Really Work?

- To test the performance of the estimator, I compare its performance with single-dimensional RD methods.
- Data-generating process (DGP):

$$Y_{i} = \begin{cases} \sum_{p+q \leq 5} a_{p,q} X_{1i}^{p} X_{2i}^{q} + \tau(X_{1i}, X_{2i}) + \epsilon_{i} & X_{1i} \geq 0, X_{2i} \geq 0, \\ \sum_{p+q \leq 5} a_{p,q} X_{1i}^{p} X_{2i}^{q} + \epsilon_{i} & \text{otherwise.} \end{cases}$$

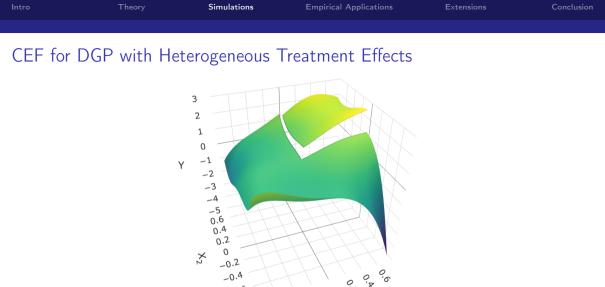
- Assume X_{1i} , X_{2i} drawn independently from 2Beta(3,3) 1, and $\epsilon_i \sim^{i.i.d.} N(0,1)$.
- ► Two specifications:
 - Constant treatment effects: $\tau(X_{1i}, X_{2i}) = 0.5$.
 - Heterogeneous treatment effects: $\tau(X_{1i}, X_{2i}) = 0.5 + X_{1i} X_{2i}$.
- ▶ 100 simulations, 10,000 observations in each.



Intro	Theory	Simulations	Empirical Applications	Extensions	Conclusion

MRD Estimator Performs Comparably and is Slightly More Precise

Panel A. Estimates of the Average Treatment Effect Over $\{X_1=0, X_2\geq 0\}$							
<u>Estimator</u>	Bias	<u>MSE</u>	Coverage	Average CI Length			
IK	0.002	0.009	0.97	0.334			
CCT	-0.015	0.017	0.87	0.397			
KR	0.001	0.009	0.96	0.372			
MRD (MSE-Optimal)	-0.030	0.006	0.94	0.318			
MRD (Bias-Corrected)	-0.031	0.007	0.94	0.329			
MRD (Undersmoothing)	-0.038	0.008	0.94	0.333			
Panel B. Estimates of the Averag	ge Treatment Effect Ov	<i>ver {X₁≥0, X₂=0}</i>					
<u>Estimator</u>	Bias	<u>MSE</u>	Coverage	Average CI Length			
IK	-0.005	0.010	0.93	0.350			
CCT	0.022	0.014	0.91	0.397			
KR	-0.007	0.008	0.98	0.361			
MRD (MSE-Optimal)	-0.018	0.006	0.95	0.320			
MRD (Bias-Corrected)	-0.018	0.007	0.95	0.331			
MRD (Undersmoothing)	-0.015	0.007	0.95	0.335			



_0.6

0.2

X1

0 10.2 _0.A -0.6

Intro	Theory	Simulations	Empirical Applications	Extensions	Conclusion

Vastly Outperforms at Estimating Heterogeneous Treatment Effects

Panel A. Estimates of the Treatment Effect Over $\{X_1=0, X_2\geq 0\}$						
Estimator	Bias	IMSE	Coverage	CI Length		
IK	0.008	0.044	0.741	0.982		
CCT	-0.006	0.080	0.751	1.216		
KR	0.019	0.029	0.786	0.933		
MRD (MSE-Optimal)	-0.028	0.017	0.927	0.498		
MRD (Bias-Corrected)	-0.030	0.021	0.922	0.522		
MRD (Undersmoothing)	-0.037	0.020	0.930	0.532		
Panel B. Estimates of the Trea	tment Effect Over {X₁≥0,	$X_2 = 0_1^3$				
<u>Estimator</u>	Bias	IMSE	Coverage	CI Length		
IK	-0.010	0.043	0.507	0.998		
CCT	0.004	0.077	0.564	1.225		
KR	-0.020	0.032	0.526	0.949		
MRD (MSE-Optimal)	-0.019	0.015	0.944	0.502		
MRD (Bias-Corrected)	-0.020	0.018	0.942	0.527		
MRD (Undersmoothing)	-0.016	0.018	0.945	0.536		

Theory	Empirical Applications	Conclusion
Intro		
Theory		
Simulations		
Empirical Applications		
Extensions		

Conclusion

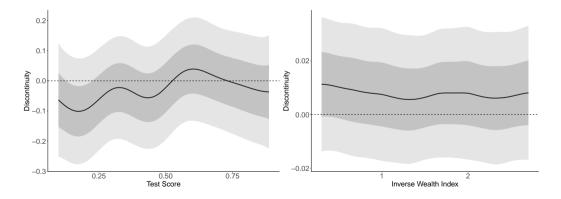
Intro	Theory	Simulations	Empirical Applications	Extensions	Conclusion

Empirical Application 1: Effect of Financial Aid on College Enrollment

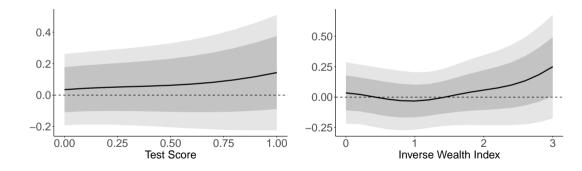
- ► The first empirical example here based on a financial aid program in Colombia.
 - However, the same MRD design can be applied to study later life health outcomes once enough time has passed.
- Students in Colombia are eligible for financial aid if their test scores exceed a certain threshold, and family wealth is low enough.
 - Hence, we have an MRD design with test scores and an inverse wealth index as the running variables.
 - ▶ We will use this to study the effect of financial aid on college enrollment.

Intro Theory Simulations Empirical Applications Extensions Conclusion

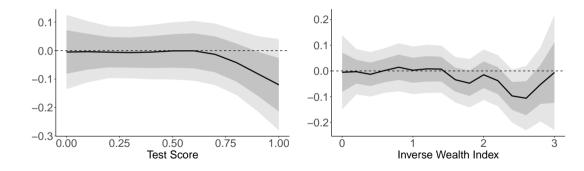
No Discontinuity in the Multivariate Density Along \mathbb{F} (Extension of McCrary Test to Multiple Dimensions)



Placebo RDs: No Discontinuity in Age



Placebo RDs: No Discontinuity in Gender



Intro	Theory	Simulations	Empirical Applications	Extensions	Conclusion

Comparison with RD Methods from Applied Work (Test Score Threshold)

Panel A. MRD Estimates							
		High Quality Institutions		Low Quality Institutions			
	Any	Any	Private	Public	Any	Private	Public
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Treatment Effect Estimate	0.334***	0.475***	0.478***	-0.01**	-0.139***	-0.062***	-0.07***
	(0.012)	(0.013)	(0.012)	(0.005)	(0.007)	(0.004)	(0.005)
Number of Observations	349,015	349,015	349,015	349,015	349,015	349,015	349,015
Panel B. Original Estimates	from LRS						
		High Quality Institutions		Low Quality Institutions			
	Any	Any	Private	Public	Any	Private	Public
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Treatment Effect Estimate	0.320***	0.465***	0.466***	0.000	-0.154***	-0.063***	-0.087***
	(0.012)	(0.012)	(0.011)	(0.007)	(0.011)	(0.007)	(0.009)
Number of Observations	299,475	299,475	299,475	299,475	299,475	299,475	299,475

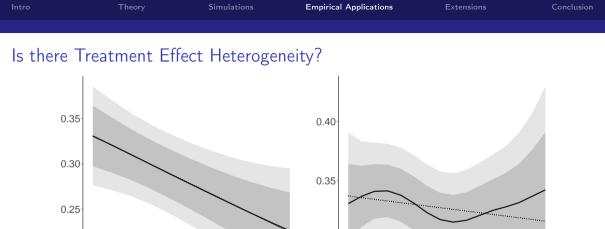
Notes: Standard errors are shown in parentheses.

Intro	Theory	Simulations	Empirical Applications	Extensions	Conclusion

Comparison with RD Methods from Applied Work (Wealth Threshold)

Panel A. MRD Estimates							
		High Quality Institutions		Low Quality Institutions			
	Any	Any	Private	Public	Any	Private	Public
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Treatment Effect Estimate	0.288***	0.429***	0.478***	-0.02***	-0.147***	-0.074***	-0.077***
	(0.021)	(0.023)	(0.019)	(0.005)	(0.011)	(0.006)	(0.005)
Number of Observations	349,015	349,015	349,015	349,015	349,015	349,015	349,015
Panel B. Original Estimates from LRS							
		High Quality Institutions		Low Quality Institutions			
	Any	Any	Private	Public	Any	Private	Public
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Treatment Effect Estimate	0.274***	0.396***	0.477***	-0.079***	-0.120***	-0.052***	-0.076***
	(0.027)	(0.024)	(0.020)	(0.018)	(0.022)	(0.015)	(0.016)
Number of Observations	23,132	23,132	23,132	23,132	23,132	23,132	23,132

Notes: Standard errors are shown in parentheses.



0.30

0.25

1.00

0.75

0.50

Test Score

Slope = -0.007

0.20

0.15

0.00

Slope = -0.106

0.25

3

2

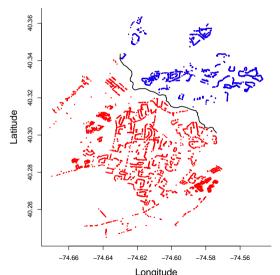
Inverse Wealth Index

Empirical Application 2: Geographical MRD Design

- The second empirical application comes from a political science study, based on a geographical RD design.
 - Possible applications of geographical RDs in health include time zone RD.
- In this application, authors study the effect of campaign advertisements on voter turnout in the 2008 US presidential elections.
 - Campaigns buy TV advertisements based on designated market areas (DMAs), which are chosen by Nielsen Media Research.
 - ► Authors argue that precise DMA designation is unrelated to political variables.
 - MRD exploiting the fact that neighboring DMAs receive very different levels of TV presidential advertisements in leadup to elections: average of 177 daily in one DMA, and zero in the other.

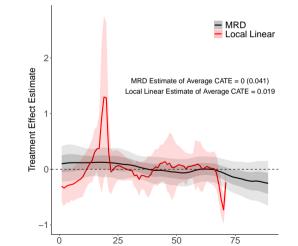
Intro Theory Simulations Empirical Applications Extensions (

Visualization of Treatment and Control Groups



Intro Theory Simulations Empirical Applications Extensions Conclusion

MRD Estimates Suggest No Effects Along Boundary, and are More Stable Than Local Linear Estimates



33 / 39

Regression Kink Designs

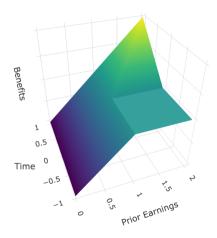
- An extension to RD designs is regression kink (RK) designs (Card et al. 2016).
 - In RK designs, the endogenous variable W_i is continuous.
 - There is a kink in the first derivative of the treatment variable.
- Example: unemployment insurance (UI).
 - Replacement rate W_i is a fraction α of previous income X_i up to a cap $\alpha \overline{X}$, constant after that.
 - Results in a kink at \overline{X} .
- Single-dimensional RK estimand:

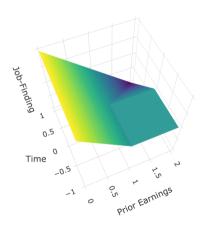
$$\frac{\lim_{x\to 0^+} \mathbb{E}[dY_i/dX_i|X_i=\bar{X}] - \lim_{x\to 0^-} \mathbb{E}[dY_i/dX_i|X=\bar{X}]}{\lim_{x\to 0^+} \mathbb{E}[dW_i/dX_i|X_i=\bar{X}] - \lim_{x\to 0^-} \mathbb{E}[dW_i/dX_i|X=\bar{X}]}.$$

Multidimensional RK (MRK) Designs

- Suppose that at a certain point in time t_0 onwards, the cap gradually raised, e.g., $\bar{X}_t = \bar{X}_{t_0} + \gamma(t t_0)$ for $t \ge t_0$.
- Then, we have a kink not only at \bar{X} and $t < t_0$, but also another kink at \bar{X}_t and $t \ge t_0$.
 - Can be estimated using my R package.
- ► RKD estimand for $x \in \mathbb{F}$, and for any $v \in \mathbb{R}^d$ satisfying $x + \delta v \notin \mathbb{F}$ for sufficiently small $\delta > 0$.: $\frac{\lim_{\epsilon \to 0} D_v \mathbb{E} \left[Y_i | X_i = x + \epsilon \cdot v, X_i \in B^1_{\epsilon}(x) \right] - \lim_{\epsilon' \to 0} D_v \mathbb{E} \left[Y_i | X_i = x + \epsilon' \cdot v, X_i \in B^0_{\epsilon'}(x) \right]}{\lim_{\epsilon \to 0} D_v \mathbb{E} \left[W_i | X_i = x + \epsilon \cdot v, X_i \in B^1_{\epsilon'}(x) \right] - \lim_{\epsilon' \to 0} D_v \mathbb{E} \left[W_i | X_i = x + \epsilon' \cdot v, X_i \in B^0_{\epsilon'}(x) \right]}.$
- Treatment effect heterogeneity may be interesting:
 - E.g., is the effect of marginal dollar on UI greater/smaller when UI is less/more generous?

Visual Illustration of MRK Design





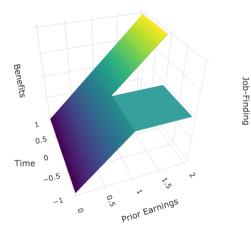
Intro Theory Simulations Empirical Applications Extensions Conclusion

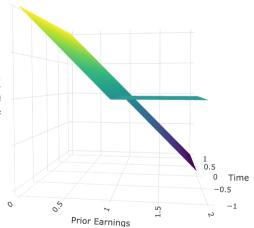
Multidimensional Regression Discontinuity/Kink (MRDK) Designs

- Consider again the previous example, but instead of a gradual increase in the cap at time t_0 , there is a one-time increase in the cap to a higher level αX^* .
- Then, we have a kink at \bar{X} and $t < t_0$, and a discontinuity at $X_i \in [\bar{X}, X^*]$ and $t = t_0$.

Conclusion

Visual Illustration of MDRK Design





	Theory	Empirical Applications	Conclusion
Int	ro		
Th	eory		
Sin	nulations		
Em	pirical Applications		
Ext			
Co	nclusion		

- ► Today, I introduced multidimensional RD (MRD) designs.
- Provided a simple estimation procedure that allows users to receover heterogeneous treatment effects, and improves precision relative to single-dimensional methods.
- > Methods can be extended to multidimensional kink designs.
- Numerous potential applications in healthcare research, e.g., to study the effects of Medicaid, effects medical spending on at-risk newborns, and effect of education on health.

Thank you!

Questions or comments? Feel free to email me at alden15@nber.org.

Paper available at aldencheng.com.

R code available at: https://github.com/alden1505/rd_multiple_running_var_code.