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Regression Discontinuity (RD) Designs
I One of the most promising tools that have emerged out of the “credibility

revolution” (Angrist and Pischke 2010).
I Gold standard for studying causal relationships is RCT, but often infeasible.

I Among other methods to study causal relationships, RD designs are arguably the
most transparent, and best mimics an RCT.

I Simple example to illustrate: effect of college-going on long-run health outcomes.
I Can run a regression of health on college-going, controlling for characteristics, but

we may be worried about omitted variables bias.

I Suppose college admission depends on whether students’ test scores pass a threshold.

I Compare outcomes of students who barely passed versus barely missed the threshold.

I Convincing because we expect the two sets of students to be very similar on both
observables and unobservables.
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Setup
I Notation:

I Treatment Wi , outcome Yi .

I Potential outcomes: Yi (1), Yi (0). Yi = WiYi (1) + (1−Wi )Yi (0).

I Running variable Xi (assume normalized so that threshold is zero).

I Sharp RD: Wi = I[Xi ≥ 0].
I Estimand:

lim
x→0+

E[Yi |Xi = x ]− lim
x→0−

E[Yi |Xi = x ]

I Fuzzy RD: limx→0+ Pr(Wi = 1|Xi = x) > limx→0− Pr(Wi = 1|Xi = x).
I Estimand:

limx→0+ E[Yi |Xi = x ]− limx→0− E[Yi |X = x ]

limx→0+ Pr(Wi = 1|Xi = x)− limx→0− Pr(Wi = 1|Xi = x)
.
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Visual Illustration (Sharp RD)
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Testing the Identification Assumptions
I The most primitive assumption is that the conditional expectation functions of

potential outcomes are continuous at the threshold: for w = 0, 1,

lim
x→0+

E[Yi (w)|Xi = x ] = lim
x→0−

E[Yi (w)|Xi = x ].

I However, this is fundamentally untestable, so Lee (2008) provide a more easily
interpretable set of conditions:

I Specifically, individuals should not be able to precisely manipulate their running
variable.

I Two intuitive tests:

1. “McCrary test”: Density of the running variable fX (x) should be continuous at the
threshold (McCrary 2008).

2. “Placebo” RDs: if we estimate RDs with baseline characteristics of individuals as the
“outcome”, the effect should be zero.
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Many Application in Healthcare
I Card, Dobkin, Maestas (2009): does Medicare save lives?

I Medicare eligibility depends primarily on whether age exceeds 65.

I Running variable = Age; Threshold = 65.
I Almond et al. (2010): effect of medical expenditure on at-risk newborns’ health.

I Newborns classified as “very low birth weight” (<1500g) receive more medical
treatment.

I Running variable = Birthweight; Threshold = 1500g.

I Almond et al. (2011): effect of longer hospital stay for mother and newborns.
I Hospitals are reimbursed based on how many “midnights” newborns stay.

I Running variable = Clock time of birth; Threshold = 12:00am (those born just after
midnight stay for longer on average).
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Limitations

I While RD provides clean identification, its biggest limitation is that it only
estimates the effect for individuals with running variable values local to the
threshold.

I Let τ(x) ≡ E[Yi (1)− Yi (0)|Xi = x ]. RD only identifies τ(0).

I In reality, we may be interested in other quantities, e.g.,

I Average Treatment Effect: E[τ(Xi )] =
∫
x
τ(x)dFX (x).

I Treatment effect heterogeneity: τ ′(x).
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Multidimensional RD (MRD) Designs Presents an Opportunity
I Suppose that treatment W is determined by more than one running variable.

I Suppose two for simplicity: X1, X2.

I Example: financial aid eligibility may depend on academic performance (X1) and
family income (X2).

I Key insight: the threshold is no longer a point, but a “frontier”, F.
→ Can estimate heterogeneous treatment effects τ(x) for x ∈ F.

●
0

(a) Single-Dimensional RD

0

(b) MRD 8 / 39
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Visual Illustration (MRD)
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Most Applied Work Do Not Take Advantage of This

I Most applied work do not take advantage of this feature of MRD.

I Typically, limit the sample to individuals eligible on one dimension, and estimate
single-dimensional RD on the other dimension.

I Disadvantages of applied approach:

I Does not make full use of heterogeneity: cannot answer questions such as “is the
treatment effect increasing/decreasing in income”?

I Inefficient: throws away (often a large) part of the sample.

I In today’s talk, I will describe a simple and more efficient way to estimate MRD
designs, which also allows us to estimate heterogeneous treatment effects.
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Examples of MRD

I With the growing availability of richer datasets, MRD designs can be used in an
increasing number of settings.

I Financial aid eligibility may depend on academic performance (X1) and family
income (X2).

I Medicaid eligibility may depend on age and wealth.

I Extra attention is paid to VLBW (<1500g) and premature (gestation age < 37
weeks) newborns.
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MRD Identification

For MRD, the conditional average treatment effect (CATE) at any point along the
frontier F is identified:

τMRD(x) ≡ E [Yi (1)− Yi (0)|Xi = x ]

= lim
ε→0

E
[
Yi |Xi ∈ B1

ε (x)
]
− lim
ε′→0

E
[
Yi |Xi ∈ B0

ε′(x)
]
,

for any x ∈ F, where Bw
ε (x) ≡ Bε(x) ∩ Ωw , Bε(x) is the ε-ball around x , and Ωw is the

region in running variable space where units are eligible for treatment w ∈ {0, 1}.
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Essentially, We Just Need to Estimate Two CEFs. But How?
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Single-Dimensional RD Estimation
I Before discussing MRD estimation, let’s first review how it’s done for

single-dimensional RDs.

I A common approach in applied work for single-dimensional RDs is to fit global
polynomials on both sides of the threshold.

I Econometricians have shown that this is generally a bad idea: τ̂(x) may be affected
by observations far from the threshold.

I RD estimation using local linear regressions has theoretically optimal properties:
I RD estimate is only determined based on observations “close” to the threshold.

I How close? Need to estimate the optimal bandwidth hopt , which depends on
parameters like the second derivative of the conditional expectation function (CEF)
that need to be estimated nonparametrically.
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Challenge for MRD Estimation
I Can we extend the local linear regression estimation method to MRD?

I In principle yes, but in practice data requirements will be very high. Why?

I Need to estimate a continuum of optimal bandwidth hopt(x) for each point x along
the treatment frontier F.

I Optimal bandwidth formula at each point also more complicated: “second
derivative” is now the Hessian matrix for the two-dimensional case.

0
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What Do We Want in a Good Estimator?

1. Flexible: estimates close to F should only be affected by nearby points
(nonparametric estimation).

2. Not too flexible: don’t want to overfit, so need to control the smoothness
(regularization, e.g., bandwidth in local linear regressions).

3. Feasible/easy to compute: while estimating MRD designs via local linear
regressions has optimality properties, estimating second derivative of a multivariate
function nonparametrically requires a lot of data.
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Thin Plate Splines
I The solution I propose is to use a method called thin plate splines.

I Specifically, for z = 0, 1, we estimte:

ĝz = argminu∈Ωz

nz∑
i=1

(y zi − u(xzi ))2 + λzJ
z
md(u),

where the penalty Jzmd(u) is given by:

Jzmd(u) ≡
∫

Ωz

∑
|α|≤m

|Dαu|2dx .

I For our purposes, main difference from local linear regressions is that the penalty
parameter is a scalar λz , instead of a continuum of optimal bandwidths hopt(x).
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Inference

I Under suitably chosen priors for the thin plate splines’ parameters, it is easy to
construct Bayesian standard errors for the estimates τ̂(x).

I Alternatively, we can use nonparametric bootstrap to obtain standard errors.

I A potential issue is that MSE-optimal estimates generally have non-negligible bias
in the asymptotic distribution.

I Common issue for nonparametric estimation.

I Solution here: undersmoothing.

I Either ad hoc: divide MSE-optimal λ̂z by two, or;

I Use MSE-optimal λ̂z from a higher-order thin plate spline.
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So, Does It Really Work?
I To test the performance of the estimator, I compare its performance with

single-dimensional RD methods.

I Data-generating process (DGP):

Yi =

{∑
p+q≤5 ap,qX

p
1iX

q
2i + τ(X1i ,X2i ) + εi X1i ≥ 0,X2i ≥ 0,∑

p+q≤5 ap,qX
p
1iX

q
2i + εi otherwise.

I Assume X1i , X2i drawn independently from 2Beta(3, 3)− 1, and εi ∼i .i .d . N(0, 1).

I Two specifications:
I Constant treatment effects: τ(X1i ,X2i ) = 0.5.

I Heterogeneous treatment effects: τ(X1i ,X2i ) = 0.5 + X1i − X2i .

I 100 simulations, 10,000 observations in each.
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CEF for DGP with Constant Treatment Effects
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MRD Estimator Performs Comparably and is Slightly More Precise

Estimator Bias MSE Coverage Average CI Length
IK 0.002 0.009 0.97 0.334
CCT -0.015 0.017 0.87 0.397
KR 0.001 0.009 0.96 0.372
MRD (MSE-Optimal) -0.030 0.006 0.94 0.318
MRD (Bias-Corrected) -0.031 0.007 0.94 0.329
MRD (Undersmoothing) -0.038 0.008 0.94 0.333

Estimator Bias MSE Coverage Average CI Length
IK -0.005 0.010 0.93 0.350
CCT 0.022 0.014 0.91 0.397
KR -0.007 0.008 0.98 0.361
MRD (MSE-Optimal) -0.018 0.006 0.95 0.320
MRD (Bias-Corrected) -0.018 0.007 0.95 0.331
MRD (Undersmoothing) -0.015 0.007 0.95 0.335

Panel A. Estimates of the Average Treatment Effect Over {X 1=0, X 2≥0}

Panel B. Estimates of the Average Treatment Effect Over {X 1≥0, X 2=0}

Notes: The IK estimator is based on local linear regression with bandwidth selection according to IK (2012). The CCT estimator is based on 
local linear regression with bandwidth selection and bias correction according to CCT (2014). The KR estimator is based on the method 
introduced in KR (2018) with an assumption on the bound for the second derivative of the CEF. Three versions of the MRD estimator are 
considered in these simulations: an estimator using the MSE-optimal choice of penalty parameter for the thin plate regression splines (TPRS), a 
bias-corrected estimator using the MSE-optimal penalty parameter from higher-order TPRS, and an undersmoothed estimator using half of the 
MSE-optimal penalty parameter. The results shown in this table are based on 100 realizations of the DGP with constant treatment effects. 
Confidence intervals are based on a 5 percent significance level. See text for more details on these simulations.
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CEF for DGP with Heterogeneous Treatment Effects
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Vastly Outperforms at Estimating Heterogeneous Treatment Effects

Estimator Bias IMSE Coverage CI Length
IK 0.008 0.044 0.741 0.982
CCT -0.006 0.080 0.751 1.216
KR 0.019 0.029 0.786 0.933
MRD (MSE-Optimal) -0.028 0.017 0.927 0.498
MRD (Bias-Corrected) -0.030 0.021 0.922 0.522
MRD (Undersmoothing) -0.037 0.020 0.930 0.532

Estimator Bias IMSE Coverage CI Length
IK -0.010 0.043 0.507 0.998
CCT 0.004 0.077 0.564 1.225
KR -0.020 0.032 0.526 0.949
MRD (MSE-Optimal) -0.019 0.015 0.944 0.502
MRD (Bias-Corrected) -0.020 0.018 0.942 0.527
MRD (Undersmoothing) -0.016 0.018 0.945 0.536

Panel A. Estimates of the Treatment Effect Over {X 1=0, X 2≥0}

Panel B. Estimates of the Treatment Effect Over {X 1≥0, X 2=0}

Notes: The IK estimator is based on local linear regression with bandwidth selection according to IK (2012). The CCT estimator is based on 
local linear regression with bandwidth selection and bias correction according to CCT (2014). The KR estimator is based on the method 
introduced in KR (2018) with an assumption on the bound for the second derivative of the CEF. Three versions of the MRD estimator are 
considered in these simulations: an estimator using the MSE-optimal choice of penalty parameter for the thin plate regression splines (TPRS), a 
bias-corrected estimator using the MSE-optimal penalty parameter from higher-order TPRS, and an undersmoothed estimator using half of the 
MSE-optimal penalty parameter. The results shown in this table are based on 100 realizations of the DGP with heterogeneous treatment effects. 
The bias and IMSE in these simulations are respectively computed as the weighted average of the difference and weighted average squared 
difference between the treatment effect estimate over a subset of the treatment frontier and the true average treatment effect over the same 
subset. The weights are based on the density of the running variables over these subsets. Confidence intervals are based on a 5 percent 
significance level, and confidence intervals and coverage rates are pointwise. See text for more details on these simulations.
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Empirical Application 1: Effect of Financial Aid on College Enrollment

I The first empirical example here based on a financial aid program in Colombia.

I However, the same MRD design can be applied to study later life health outcomes
once enough time has passed.

I Students in Colombia are eligible for financial aid if their test scores exceed a
certain threshold, and family wealth is low enough.

I Hence, we have an MRD design with test scores and an inverse wealth index as the
running variables.

I We will use this to study the effect of financial aid on college enrollment.
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No Discontinuity in the Multivariate Density Along F (Extension of McCrary
Test to Multiple Dimensions)
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Placebo RDs: No Discontinuity in Age
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Placebo RDs: No Discontinuity in Gender
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Comparison with RD Methods from Applied Work (Test Score Threshold)
Panel A. MRD Estimates

High Quality Institutions Low Quality Institutions
Any Any Private Public Any Private Public
(1) (2) (3) (4) (5) (6) (7)

Treatment Effect Estimate 0.334*** 0.475*** 0.478*** -0.01** -0.139*** -0.062*** -0.07***
(0.012) (0.013) (0.012) (0.005) (0.007) (0.004) (0.005)

Number of Observations 349,015 349,015 349,015 349,015 349,015 349,015 349,015

Panel B. Original Estimates from LRS

High Quality Institutions Low Quality Institutions
Any Any Private Public Any Private Public
(1) (2) (3) (4) (5) (6) (7)

Treatment Effect Estimate 0.320*** 0.465*** 0.466*** 0.000 -0.154*** -0.063*** -0.087***
(0.012) (0.012) (0.011) (0.007) (0.011) (0.007) (0.009)

Number of Observations 299,475 299,475 299,475 299,475 299,475 299,475 299,475

Notes: Standard errors are shown in parentheses.
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Comparison with RD Methods from Applied Work (Wealth Threshold)
Panel A. MRD Estimates

High Quality Institutions Low Quality Institutions
Any Any Private Public Any Private Public
(1) (2) (3) (4) (5) (6) (7)

Treatment Effect Estimate 0.288*** 0.429*** 0.478*** -0.02*** -0.147*** -0.074*** -0.077***
(0.021) (0.023) (0.019) (0.005) (0.011) (0.006) (0.005)

Number of Observations 349,015 349,015 349,015 349,015 349,015 349,015 349,015

Panel B. Original Estimates from LRS

High Quality Institutions Low Quality Institutions
Any Any Private Public Any Private Public
(1) (2) (3) (4) (5) (6) (7)

Treatment Effect Estimate 0.274*** 0.396*** 0.477*** -0.079*** -0.120*** -0.052*** -0.076***
(0.027) (0.024) (0.020) (0.018) (0.022) (0.015) (0.016)

Number of Observations 23,132 23,132 23,132 23,132 23,132 23,132 23,132

Notes: Standard errors are shown in parentheses.

29 / 39



Intro Theory Simulations Empirical Applications Extensions Conclusion

Is there Treatment Effect Heterogeneity?

Slope = −0.106
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Empirical Application 2: Geographical MRD Design
I The second empirical application comes from a political science study, based on a

geographical RD design.

I Possible applications of geographical RDs in health include time zone RD.

I In this application, authors study the effect of campaign advertisements on voter
turnout in the 2008 US presidential elections.

I Campaigns buy TV advertisements based on designated market areas (DMAs),
which are chosen by Nielsen Media Research.

I Authors argue that precise DMA designation is unrelated to political variables.

I MRD exploiting the fact that neighboring DMAs receive very different levels of TV
presidential advertisements in leadup to elections: average of 177 daily in one DMA,
and zero in the other.
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Visualization of Treatment and Control Groups
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MRD Estimates Suggest No Effects Along Boundary, and are More Stable
Than Local Linear Estimates

MRD Estimate of Average CATE = 0 (0.041)

Local Linear Estimate of Average CATE = 0.019
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Regression Kink Designs
I An extension to RD designs is regression kink (RK) designs (Card et al. 2016).

I In RK designs, the endogenous variable Wi is continuous.

I There is a kink in the first derivative of the treatment variable.

I Example: unemployment insurance (UI).
I Replacement rate Wi is a fraction α of previous income Xi up to a cap αX̄ , constant

after that.

I Results in a kink at X̄ .

I Single-dimensional RK estimand:

limx→0+ E[dYi/dXi |Xi = X̄ ]− limx→0− E[dYi/dXi |X = X̄ ]

limx→0+ E[dWi/dXi |Xi = X̄ ]− limx→0− E[dWi/dXi |X = X̄ ]
.
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Multidimensional RK (MRK) Designs
I Suppose that at a certain point in time t0 onwards, the cap gradually raised, e.g.,

X̄t = X̄t0 + γ(t − t0) for t ≥ t0.

I Then, we have a kink not only at X̄ and t < t0, but also another kink at X̄t and
t ≥ t0.

I Can be estimated using my R package.

I RKD estimand for x ∈ F, and for any v ∈ Rd satisfying x + δv /∈ F for sufficiently
small δ > 0.:
limε→0 DvE

[
Yi |Xi = x + ε · v ,Xi ∈ B1

ε (x)
]
− limε′→0 DvE

[
Yi |Xi = x + ε′ · v ,Xi ∈ B0

ε′(x)
]

limε→0 DvE [Wi |Xi = x + ε · v ,Xi ∈ B1
ε (x)]− limε′→0 DvE

[
Wi |Xi = x + ε′ · v ,Xi ∈ B0

ε′(x)
] .

I Treatment effect heterogeneity may be interesting:
I E.g., is the effect of marginal dollar on UI greater/smaller when UI is less/more

generous?
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Visual Illustration of MRK Design
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Multidimensional Regression Discontinuity/Kink (MRDK) Designs

I Consider again the previous example, but instead of a gradual increase in the cap
at time t0, there is a one-time increase in the cap to a higher level αX ∗.

I Then, we have a kink at X̄ and t < t0, and a discontinuity at Xi ∈ [X̄ ,X ∗] and
t = t0.
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Visual Illustration of MDRK Design
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Conclusion

I Today, I introduced multidimensional RD (MRD) designs.

I Provided a simple estimation procedure that allows users to receover heterogeneous
treatment effects, and improves precision relative to single-dimensional methods.

I Methods can be extended to multidimensional kink designs.

I Numerous potential applications in healthcare research, e.g., to study the effects of
Medicaid, effects medical spending on at-risk newborns, and effect of education on
health.
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Thank you!

Questions or comments? Feel free to email me at alden15@nber.org.

Paper available at aldencheng.com.

R code available at: https://github.com/alden1505/rd_multiple_running_var_code.
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